Всем привет!
В этой статье мы рассмотрим:
- Что такое класс усилителя звука;
- Какой класс усилителя лучше: A, B, AB, H, D;
- В чем их достоинства и недостатки;
- и многое другое.
Выбирая в магазине подходящий усилитель для аудиосистемы, обратите внимание на то, в каком классе они работают. Класс АВ можно назвать традиционным, в нем работает большинство усилителей. В последнее время все чаще встречаются усилки класса D, которые называют цифровыми, хотя это не совсем правильно, и скоро вы поймете почему.
Что предпочесть? Какой лучше? Как обычно, однозначного ответа нет, поскольку у каждого есть свои преимущества и недостатки. Но для начала пару слов о том, что и как там вообще происходит внутри.
Качнем току
Основные элементы практически любого усилителя — это транзисторы. Не будем вдаваться в суть построения различных схем, тем более, что их на самом деле далеко не одна, а выделим основное — сам принцип работы. Для этого на время представим усилитель в виде, ну, скажем... водопровода. Неожиданно, правда? Тем не менее, аналогия налицо, и вы сейчас в этом убедитесь.
Во-первых, в усилителе есть блок питания, преобразующий однополярное напряжение бортовой сети („плюс" и „масса") в двухполярное („плюс",„масса" и „минус"). Мы уже говорили, зачем он необходим, когда рассматривали, как измеряются мощности усилителей. Так вот, в такой системе двухполярный блок питания будет представлять собой не что иное, как два насоса (насос со стороны „+" будет как бы накачивающим, а насос со стороны „-" как бы откачивающим ток относительно массы). Наша задача — пустить эти потоки через нагрузку усилителя (нагрузка — это как раз подключенный к усилителю динамик). Для этого, понятное дело, нужны краны, которые будут управлять этими потоками.
Вот как раз роль этих кранов и играют транзисторы. Они могут открываться, пропуская через себя большой поток, или закрываться, уменьшая его. „Краны" эти по отношению друг к другу обратные: когда один начнет закрываться, другой будет открываться. Соответственно, поток от „насосов" будет направляться через нагрузку то в одну, то в другую сторону. А управляет всем этим открытием-закрытием как раз входной сигнал.
Усилители класса А
Но на самом деле просто открывать и закрывать транзистор еще мало, ведь нам нужно, чтобы сигнал усиливался без искажений, то есть, чтобы выходной сигнал по форме в точности повторял входной. Значит нам необходимо, чтобы транзисторы (эти самые краны) открывались и закрывались по строго линейному закону, строго пропорционально входному сигналу.
Но вот незадача, на самом деле транзистор может так работать не во всем своем диапазоне. Например, если входной сигнал слишком маленький, то транзистор на него почти не реагирует, зато при достижении определенного уровня резко открывается. Какая уж тут линейность?
А вот дальше этого момента реагирует на изменение управляющего сигнала вполне адекватно, почти что линейно. Значит, для того, чтобы искажений было как можно меньше, транзистор придется все время держать в приоткрытом состоянии. Это называется задать смещение транзистора или выбрать его рабочую точку.
В этом случае говорят, что усилитель работает в классе А. Такой класс усилителей по праву считается аудиофильским, поскольку обеспечивает очень маленькие искажения сигнала.
Но самый главный его недостаток — высокий ток покоя. Ток покоя — это ток, который будет течь через транзисторы, даже когда входного сигнала нет (ведь нам же пришлось задать транзисторам некоторое смещение). Из-за этого они довольно сильно нагреваются, и значительная часть энергии от блока питания уходит в тепло, а КПД усилителя составляет в лучшем случае всего лишь около 20-30%.
Усилители класса B
Но поскольку автомобильные усилители на самом деле делаются не на одном транзисторе, а строятся по так называемым двухтактным схемам, т.е. с 2 транзисторами, то возникает одна заманчивая идея. Что, если не держать их постоянно приоткрытыми? Пусть они оба при отсутствии входного сигнала будут закрытыми? Поскольку транзисторы по отношению друг к другу обратные, то получится, что один из них будет открываться, когда сигнал положительный, а другой — когда сигнал отрицательный. Иными словами, получится, что первый будет усиливать положительную полуволну сигнала, а другой — отрицательную, на нагрузке же эти половинки благополучно сложатся. Когда усилитель работает в таком режиме, то говорят, что это класс В.
Решение, несомненно, хорошее, ведь через транзисторы в такой схеме не течет бесполезный ток, когда сигнала нет, а значит и КПД усилителя получается гораздо выше. Однако все бы замечательно, но дело в том, что какие бы мы хорошие и качественные транзисторы не поставили, у них все равно будет присутствовать нелинейность в самом начале их открытия. А это значит, что в тот момент, когда один транзистор только закрывается, а второй только открывается, неизбежно появится искажение в виде ступеньки.
Когда уровень сигнала высокий, эта ступенька не выглядит очень уж большой, и если особо не придираться, то на нее еще можно и не обращать особого внимания. А вот на небольших уровнях сигнала она будет уже слишком заметна. Поэтому класс В в чистом виде в автомобильных усилителях не используется из-за больших искажений.
Так какой же режим лучше всего выбрать для усилителя? В классе А — маленькие искажения, но и КПД низкий, львиная доля мощности блока питания уйдет в тепло (вот почему усилители, работающие в этом классе, греются как утюги). Класс В обеспечит хороший КПД, но искажения будут такими, что о высоком качестве воспроизведения особо говорить не придется.
Усилители класса АB
Компромиссное решение — это смешанный режим, когда транзисторам обеспечивается лишь небольшое смещение, гораздо меньшее, чем в чистом классе А, но уже достаточное для того, чтобы избежать заметной ступеньки в выходном сигнале. При этом так и говорят — усилитель работает в классе АВ.
Выбирая рабочую точку транзисторов (ну или иными словами, выбирая насколько транзисторы будут приоткрыты в режиме покоя, то есть при отсутствии входного сигнала), можно сделать усилитель класса АВ ближе к классу А или к В. Например, в первом случае наиболее заметен тот эффект, что до достижения определенной мощности усилитель работает в классе А, а на высоких уровнях как бы автоматически переходит в класс АВ — решение, довольно часто применяемое в усилителях высокого класса (иногда в описаниях к таким усилителям можно встретить обозначение их класса как Real АВ).
Справедливости ради, нужно отметить, что классы А, В и АВ не единственные. Есть и другие, которые можно назвать производными от них, они представляют собой попытки совместить экономичность АВ-класса с качеством А-класса.
Усилители класса Super А
Например, класс А+ — симбиоз усилителей В-класса и А-класса (выход первого является средней точкой для второго). Или класс Super A (Non Switching) — в них специальная схема не дает транзисторам полностью запираться(ведь основные искажения, как вы уже знаете, как раз из-за нелинейности в самый начальный момент открытия транзисторов-„кранов").
Усилители класса G
А усилители класса G вообще представляют собой два каскада усиления, работающих каждый от своего источника питания разного напряжения (на небольшой мощности работает каскад, питающийся от источника с небольшим напряжением, а на пиках к нему подключается второй, питающийся от источника с большим напряжением).
Впрочем, все это довольно сложные схемы, которые и в домашней то технике применяются все реже, а уж в автомобильных усилителях это, мягко говоря, и вовсе экзотика.
Усилители класса H
А вот усилители класса Н можно с уверенностью назвать чисто автомобильными. В этом классе делают усилители, встроенные в головное устройство. Понятное дело, в них нет никаких сложных блоков питания, преобразующих бортовые 12 Вольт в двухполярное питание с большим напряжением (впрочем, встроенный в ГУ усилитель все равно питается отдвухполярного напряжения, просто за среднюю точку для него принимается Uпит/2, то есть, условно говоря, 6 Вольт), поэтому мощность таких усилителей невелика.
Класс Н — это попытка в какой-то мере нивелировать основной недостаток маломощных усилителей — зажатость звучания. Так как же он работает?
На самом деле, усилитель класса Н — это практически то же самое, что и обычный усилитель класса АВ. Только в нем есть так называемая схема удвоения напряжения питания, основной элемент которой — конденсатор, накапливающий заряд, когда входной сигнал не очень большой. Ну а поскольку реальный музыкальный сигнал — это вам не синус, на котором по стандарту измеряется мощность, то для него характерны кратковременные пики.
Так вот, как раз в моменты таких пиков этот самый конденсатор специальной схемой добавляется последовательно к питающему напряжению, и оно как бы кратковременно удваивается, помогая усилителю воспроизвести эти пики с меньшими искажениями. Это, на самом деле, не особо сказывается на мощности усилителя, измеренной стандартно на синусоидальном сигнале, но на средних и высоких частотах звучание субъективно становится лучше.
Кстати!
Класс усилителя в первом приближении можно распознать по характеру зависимости КНИ от мощности. Смотрите, на малых уровнях сигнала класс А обеспечивает самые маленькие искажения. А вот класс В за счет „ступеньки" в сигнале на малых уровнях непременно будет иметь повышенные искажения (так называемая проблема первого Ватта). Класс АВ где-то между ними...
Усилители класса D
Классы А, В, АВ и прочие их производные — это все традиционные классы аналоговых усилителей, принципы построения у них схожие, разве что режимы работы транзисторов выбираются разные, да добавляются кое-какие примочки. Но есть и усилители, которые строятся изначально несколько иначе. Это импульсные усилители класса D (их, кстати, иногда называют цифровыми, хотя на самом деле технически это не очень корректно, в цифровую форму там ничего не переводится).
Давайте в общих чертах разберем, как работает усилитель D-класса.
Первым делом аналоговый входной сигнал (то есть обычный непрерывный сигнал с изменяющейся амплитудой) преобразуется в импульсный (сигнал с постоянной амплитудой, но прерывающийся). Причем длительности следующих друг за другом импульсов и пауз между ними будут разными, но самое главное — они будут в строгой зависимости от входного сигнала. Например, выше амплитуда входного сигнала — импульсы длиннее, ниже амплитуда — импульсы короче. Это называется широтно-импульсная модуляция (ШИМ).
Теперь полученный импульсный сигнал нужно усилить, и делается это точно так же, как и в обычных усилителях. И тут может возникнуть вопрос: а зачем вообще было преобразовывать сигнал в импульсный, если его все равно приходится усиливать, как и в обычном усилителе? Оказывается, смысл есть. Дело в том, что транзисторы в этом случае будут работать совершенно по-другому — в ключевом режиме. То есть они будут либо полностью открытыми, либо полностью закрытыми, без промежуточных вариантов. А ведь для такой работы, во-первых, нет необходимости подбирать транзисторы с линейной ВАХ и стараться попасть на линейный участок этой характеристики. Во-вторых (а это, собственно, следствие из первого), КПД таких усилителей может запросто вплотную приблизиться к идеалу в 100%. А ведь это показатель, недостижимый для обычных усилителей в принципе. Так что усиливаем импульсный сигнал, и радуемся, как у нас это легко получается.
Однако ж подавать такой усиленный импульсный сигнал на акустические системы, понятное дело, еще рано (как, позвольте спросить, под такой сигнал будет диффузор плясать?). Для этого нужно преобразовать его в обычную, аналоговую форму. Сделать это можно с помощью катушки индуктивности и конденсатора, которые вместе будут представлять собой LC-фильтр. Пропустив через них наш импульсный ШИМ-сигнал, на выходе мы получим усиленный сигнал, своей формой повторяющий входной.
Основное достоинство усилителей D-класса — высокий КПД. Однако есть и серьезный недостаток — частотный диапазон усилителя чаще всего бывает серьезно ограничен сверху. Именно это долгое время и было причиной применения этой технологии только в басовых моноблоках, рассчитанных исключительно на сабвуферное применение. Впрочем, с ее развитием и обычные, широкополосные усилители D-класса уже давно перестали быть экзотикой.
Преимущества усилителей класса D.
Задачей звуковых усилителей является передача входного звукового сигнала к системе воспроизведения звука с необходимыми громкостью и уровнем мощности — точно, эффективно и с малыми помехами. Звуковые частоты — это диапазон от 20 Гц до 20 кГц, соответственно усилитель должен обладать хорошей АЧХ во всем диапазоне (или же в более узкой области, если речь идет о динамике с ограниченной полосой воспроизведения, например о среднечастотном или высокочастотном динамике в многополосной системе).
Мощности могут быть разными (в зависимости от конкретного устройства): милливатты в наушниках, ватты в звуковых телевизионных системах и аудио для ПК, десятки ватт в домашних и автомобильных звуковых системах, сотни и более ватт в мощных домашних и концертных звуковых системах.
В обычных аналоговых звуковых усилителях транзисторы в линейном режиме применяются для генерации выходного напряжения, которое точно масштабирует входное. Коэффициент передачи по напряжению обычно достаточно велик (около 40 дБ). Если усиление в прямом направлении входит в цепь с обратной связью, то и коэффициент усиления всей цепи с обратной связью будет велик. Обратная связь в усилителях применяется часто, так как большой коэффициент передачи в сочетании с обратной связью улучшает качество усилителя: подавляет искажения, вызванные нелинейностями в прямой цепи, и снижает шумы от источника питания за счет того, что снижается коэффициент влияния источника питания (PSRR).
В обычном транзисторном усилителе транзисторы выходного каскада обеспечивают непрерывный сигнал на выходе. Существует множество различных инженерных решений для аудиосистем: усилители классов A, AB и B.
Во всех, даже в самых эффективных, линейных выходных каскадах рассеивание мощности больше, чем в усилителях класса D. Это свойство усилителей класса D обеспечивает им преимущество в различных системах, так как малое рассеивание мощности означает меньший нагрев схемы, позволяет экономить место на плате, снижает стоимость и продлевает срок автономной работы батарей в портативных устройствах.
Материал взят из свободного доступа в интернете, выражаю благодарность настоящему автору этого труда.